
tox-docker
Release 4.0.0

Feb 14, 2023

Contents

1 Usage and Installation 3

2 Configuration 5

3 Command-Line Arguments 7

4 Container Naming & Parallel Runs 9

5 Example 11

6 Environment Variables 13

7 Version Compatibility 15

8 Change Log 17

9 Development 19
9.1 Code Style . 19

i

ii

tox-docker, Release 4.0.0

A tox plugin which runs one or more Docker containers during the test run.

Links: Source Code | Documentation

Contents 1

https://tox.readthedocs.io/en/latest/
https://www.docker.com/
https://github.com/tox-dev/tox-docker
https://tox-docker.readthedocs.io/en/latest/
https://dev.azure.com/dcrosta/tox-docker/_build?definitionId=1&_a=summary

tox-docker, Release 4.0.0

2 Contents

CHAPTER 1

Usage and Installation

tox loads all plugins automatically. To use tox-docker, pip install it into the same Python environment as you
install tox into, whether that’s a virtualenv, etc.

You do not need to do anything special when running tox to invoke tox-docker, however you do need to configure your
project to configure docker containers (see “Configuration” below).

3

tox-docker, Release 4.0.0

4 Chapter 1. Usage and Installation

CHAPTER 2

Configuration

Each docker container you want to run must be configured via a [docker:container-name] section. The
container-name is a name you choose which must start with a letter and consist of only letters, numbers, dots,
hyphens, and underscores. Each [docker:container-name] section must contain at least an image directive,
which must name a Docker image as you’d pass to docker run:

[docker:db]
image = postgres:9-alpine

Then, in your [testenv], use the docker directive to list containers you wish to run during those tests:

[testenv]
docker =

db
commands = ...

The [docker:container-name] section may contain the following directives:

image (required) The Docker image to run. This value is passed directly to Docker, and may be of any of the forms
that Docker accepts in eg docker run.

environment A multi-line list of KEY=value settings which is used to set environment variables for the container.
The variables are only available to the container, not to other containers or the test environment.

ports A multi-line list of port mapping specifications, as HOST_PORT:CONTAINER_PORT/PROTO, which
causes the container’s EXPOSE d port to be available on HOST_PORT. See below for more on port mapping.

If ports is not specified, all the container’s EXPOSE d ports are mapped (equivalent to docker run -P
...)

For each mapped port, an environment variable of the form <container-name>_<port-number>_<protocol>_PORT
(eg NGINX_80_TCP_PORT or TELEGRAF_8092_UDP_PORT) is set for the test run.

For each container, an environment variable of the form <container_name>_HOST is set for the test run,
indicating the host name or IP address to use to communicate with the container.

If you set the HOST_PORT to zero, a random available port will be assigned on the tox host. This is useful in
case the container does not EXPOSE the port you need, or if you want to map only some of the EXPOSEd ports.

5

https://docs.docker.com/glossary/#image
https://docs.docker.com/glossary/#image

tox-docker, Release 4.0.0

In both environment variables, the container name part is converted to upper case, and all non-alphanumeric
characters are replaced with an underscore (_).

Tox-docker does not attempt to ensure that you have proper permission to bind the HOST_PORT, that it is not
already bound and listening, etc; if you explicitly list ports, it is your responsibility to ensure that it can be
successfully mapped.

links A multi-line list of container links, as other-container-name or
other-container-name:alias. If no alias is given, the other-container-name is used.
Within the container, the EXPOSE d ports of the other container will be available via the alias as hostname.

When using links, you must specify containers in the correct start order in the docker directive of your testenv
– tox-docker does not attempt to resolve a valid start order.

volumes A multi-line list of volumes to make available to the container, as
<type>:<options>:<outside_path_or_name>:<inside_path>. The type must be bind, and
the only supported options are rw (read-write) or ro (read-only). The outside_path_or_name must be a
path that exists on the host system. Both the outside_path and inside_path must be absolute paths.

healthcheck_cmd, healthcheck_interval, healthcheck_retries, healthcheck_start_period, healthcheck_timeout
These set or customize parameters of the container health check. The healthcheck_interval,
healthcheck_start_period, and healthcheck_timeout are specified as a number of seconds.
The healtcheck_cmd is an argv list which must name a command and arguments that can be run within the
container; if not specified, any health check built in to the container is used.

If any healthcheck parameters are defined, tox-docker will delay the test run until the container reports healthy,
and will fail the test run if it never does so (within the parameters specified).

6 Chapter 2. Configuration

https://docs.docker.com/network/links/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/engine/reference/builder/#healthcheck

CHAPTER 3

Command-Line Arguments

All Docker container configuration is specified in tox.ini, but some aspects of tox-docker’s behavior can be
changed at run-time:

--docker-dont-stop=CONTAINER After the test run, don’t stop & remove the named CONTAINER – leaving
the container running allows manual inspection of it, eg via docker exec May be specified multiple
times to leave several containers running.

7

tox-docker, Release 4.0.0

8 Chapter 3. Command-Line Arguments

CHAPTER 4

Container Naming & Parallel Runs

Since version 4, tox-docker adds a suffix to the name of running containers, so that parallel invocations of tox may
succeed (eg on a busy CI server). The details of the name suffix are not specified, and may change in a future version
– you should not rely on the details of the generated name.

Even with unique container names, parallel runs may still fail, if you map a static exposed port number for a container
(as the tox host will not let two processes bind the same port).

9

tox-docker, Release 4.0.0

10 Chapter 4. Container Naming & Parallel Runs

CHAPTER 5

Example

[testenv:integration-tests]
deps = pytest
commands = py.test {toxinidir}/tests
docker =

db
appserv

[docker:db]
image = postgres:11-alpine
Environment variables are passed to the container. They are only
available to that container, and not to the testenv, other
containers, or as replacements in other parts of tox.ini
environment =

POSTGRES_PASSWORD=hunter2
POSTGRES_USER=dbuser
POSTGRES_DB=tox_test_db

The healthcheck ensures that tox-docker won't run tests until the
container is up and the command finishes with exit code 0 (success)
healthcheck_cmd = PGPASSWORD=$POSTGRES_PASSWORD psql \

--user=$POSTGRES_USER --dbname=$POSTGRES_DB \
--host=127.0.0.1 --quiet --no-align --tuples-only \
-1 --command="SELECT 1"

healthcheck_timeout = 1
healthcheck_retries = 30
healthcheck_interval = 1
healthcheck_start_period = 1
Configure a bind-mounted volume on the host to store Postgres' data
NOTE: this is included for demonstration purposes of tox-docker's
volume capability; you probably _don't_ want to do this for real
testing use cases, as this could persist data between test runs
volumes =

bind:rw:/my/own/datadir:/var/lib/postgresql/data

[docker:appserv]
(continues on next page)

11

tox-docker, Release 4.0.0

(continued from previous page)

You can use any value that `docker run` would accept as the image
image = your-registry.example.org:1234/your-appserv
Within the appserv container, host "db" is linked to the postgres container
links =

db:db
Use ports to expose specific ports; if you don't specify ports, then all
the EXPOSEd ports defined by the image are mapped to an available
ephemeral port.
ports =

8080:8080/tcp

12 Chapter 5. Example

CHAPTER 6

Environment Variables

If you are running in a Docker-In-Docker environment, you can override the address used for port checking using the
environment variable TOX_DOCKER_GATEWAY. This variable should be the hostname or ip address used to connect
to the container.

13

tox-docker, Release 4.0.0

14 Chapter 6. Environment Variables

CHAPTER 7

Version Compatibility

Tox-docker requires tox to be run in Python 3.7 or newer, and requires tox version 3.0 or newer. Older versions of
tox-docker may work with older versions of Python or tox, but these configurations are no longer supported.

15

tox-docker, Release 4.0.0

16 Chapter 7. Version Compatibility

CHAPTER 8

Change Log

• 4.0.0

– Support tox 4 as well as tox 3

– Drop support for Python 3.6

– Give running containers a unique name to support concurrent & parallel tox use cases (thanks
@chaitu-tk and @goodtune for inspiration)

– Add support for image registry URLs that contain a port

• 3.1.0

– Support docker-py 5.x

• 3.0.0

– Support tox 3 and newer only

– Automatically cleans up started docker containers, even if Tox encounters an error during the test run
(thanks @d9pouces)

• 2.0.0

– Support Python 3.6 and newer only

– Move all container configuration to [docker:container-name] sections

– Don’t infer container health by pinging TCP ports; only the healthcheck indicates a container’s health

17

tox-docker, Release 4.0.0

18 Chapter 8. Change Log

CHAPTER 9

Development

9.1 Code Style

Tox-docker uses black and isort to enforce style standards on the codebase. The formatting is orindaily done for you
via pre-commit, and is enforced via the tox -e style build. To work on tox-docker locally with pre-commit, pip
install -r dev-requirements.txt‘ and pre-commit install to set up the git hooks; subsequently, when you git
commit, the formatter will be run. If the changed files are not conformant, the hook will have reformatted them and
you may need to run pre-commit again. You can run pre-commit run --files *.py to manually run the
formatters.

19

https://pre-commit.com/

	Usage and Installation
	Configuration
	Command-Line Arguments
	Container Naming & Parallel Runs
	Example
	Environment Variables
	Version Compatibility
	Change Log
	Development
	Code Style

